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Conformally flat space-times of locally constant connection are studied. The 
constant connection defines a global vector field which is assumed timelike. The 
general solution of the geodesic equations is presented and several theorems 
characterizing the geometry of such space-times are proved. 

1. INTRODUCTION 

This is the first of two papers dealing with conformally flat space-times 
in which the conformal factor is a homogeneous linear function of the 
space-time coordinates. Such manifolds, first studied by Antonelli and 
Voorhees (1975), have been called spaces of locally constant connection 
(Ruhnau, 1977). Their particular merit is that it is always possible to find 
local coordinates in which the connection coefficients are constant. This has 
the effect of "decoupling" the geodesic equations into the independent pair 

d x  i 

dt 

du i 

dt 

= U i 

Fj!k uJuk (1) 

In particular, it becomes possible to find the general solution of these 
equations and based on this to obtain some rather elegant results char- 
acterizing the geometry of these spaces (Voorhees, 1983). 
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Spaces of locally constant connection were first used in the case of 
positive definite metric to obtain a geometric reformulation of the classical 
Lotka-Volterra equation of mathematical ecology (Antonelli and Voorhees, 
1975) and to model the growth of idealized coral reefs (Antonelli, 1983; 
Voorhees, 1983). They have been studied by Ruhnau (1977), who proved the 
following: 

Theorem 1. Sufficient conditions for a locally constant Levi-Civith 
connection ~ to be a metric connection are that there exist a 
constant vector ~7 such that in a coordinate system in which the ~ 
are constants, 

~s<i rt~ik = VkVlil (2) 

where 7/i/is the appropriate flat metric (i.e., 7/i/in our case is the 
Minkowski metric). 

She conjectures that (2) is also necessary. If this is correct then the only 
possible metric for a space of locally constant connection is 

gij = e2q'lJij 

,/,= ~ ~*x k (3) 
k = l  

Only metrics of this form, with ~ = alx I + a2X 2 -~ O~3X 3 - -  O~4X 4 ~ (O~'X) will 
be considered. Ruhnau has also geometrically characterized spaces of locally 
constant connection in terms of groups of affine transformations, proving 
the following: 

Theorem 2 (Ruhnau, 1977). An n-dimensional manifold with met- 
ric (M, g) is a space of locally constant connection if and only if it 
admits an n-parameter transitive Abelian group of affine transfor- 
mations. 

The connection coefficients, Riemann, Ricci, and Einstein tensors, and 
scalar curvature for a metric (3) are given in the Appendix. The notation is 
that for any vectors u, v l ul: and (u -v )  indicate the product formed with 
respect to the Minkowski metric ~ij = diag(1, 1, 1 , -  1), while uiu  + and u iv  i 

indicate the product with respect to the conformal metric &j .  Units are 
G = c = l .  
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Since Rjj 4:0 the space-time is not empty. By inspection of the Einstein 
tensor (A.5) we obtain the following: 

Theorem 3. Let (M, g) be a space-time with locally constant con- 
nection. The stress-energy tensor of (M, g) satisfies the nonnegative 
energy condition T~ititJ>~O for all timelike t i if and only if a i is 
timelike or null. 

In this paper a ~ will be assumed timelike and future pointing. The 
second paper (in this issue: Conformally Flat Spaces of Locally Constant 
Connection, II) will consider the case in which a~ is null. 

2. GEODESICS 

It is not difficult to see that the geodesic equations for a space of 
locally constant connection can be written as 

d x  i 
- /di 

dt 

du  i 

dt = u ) , '  (4) 

Direct substitution in these equations yields the following: 

Theorem 4. Let (M, g) be a space-time with locally constant con- 
nection. The solution of the geodesic equations with initial condi- 
tion u'(0) is 

ui( t )  = ui(O)+ I u(0)l 2t'~' (5) 
1 + 2(a-u(O)) t  + I cq21 u(0)l 2t 2 

where t is an affine parameter. 

If ui(O) is null (5) reduces to 

uiu(t) = ui(O) 
l+2(a .u(O)) t  (6) 

The denominator in both (5) and (6) may become zero for finite values of t. 
In addition (a. u(t)) may be zero for finite t. Thus geodesic completeness 
must be examined. 
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The d e n o m i n a t o r  of (5) has zeros for 

t~ : - (~ .  u(O)) + [ (~-  u ( o ) f  - 1~121 u(O)I ~-] '/2 (7) 

while that  of (6) has a zero at 

1 
tu  - z t  ~ .  " '  a" u ' ~ "  ( 8 )  

and (a. u(t)) is zero for 

(~' ,40)) 
t~ - (9) 

I.l=tu(O)l z 

so long as ui(0) is not  null. At  this po in t  we must  d is t inguish the cases in 
which u'(0) is null, t imelike,  or spacelike.  In addi t ion ,  we choose  coord ina tes  
and normal iza t ion  of  u'(t) such that  i -  , 2. a - 8 4 and l t i ( O ) l l i ( o )  = [[1(0)1 

�9 f 1, u i spacel ike  

uiu' = l O, u i null 
--  1, u i t imel ike 

(io) 

Case h ui(O) null. With  a i = 8~ (6) becomes  

~ ( t )  - r  (11) 
1-2u4(O)t 

This is incomple te  for 

1 
tN-- 2 [ O ) - u  4"~" (12) 

If u 4 ( 0 ) > 0  the geodesic  is incomple te  to the future. If u 4 ( 0 ) < 0  it i, 
incomple te  to the past .  If  -r is t ime in the f rame i _  i a - 6 4 then 

d~ u4(O) 
u4(t)  = -~- = 1 _ 2 u 4 ( 0 )  t (13 

giving 

~ '=  -- �89162 (14 



Conformally Flat Space-Times of Locally Constant Connection. I. 255 

Depending on the sign of ll4(0) there will be an event horizon either in 
the past or in the future. By (13) the frequency of light traveling along a null 
geodesic undergoes a red shift which approaches infinity as t - t N .  

Case lh ui(O) spacelike. With a' = 8~ (5) becomes 

.'(o) + ,a~ 
.'(,) - (15) 

1--2u4(O)t--t  2 

Observing that for spacelike geodesics ( u 4 ( 0 ) ) 2 + I  = ]Ul 2, where u is the 
spacelike part of u ~, (7) requires 

-I"1 ~ t -  u4(0)~ lul (16) 

Note that the domain define by (16) is symmetric if u4(0)=0,  that is, if 
(a. u(0))= 0. In this case (15) yields 

.( t)  - u(o) 
1 - - t  2 

. " ( t ) -  t 
(17) 

1 - t  2 

As t approaches -+ 1 spatial distances are contracted to zero and again there 
is an infinite red shift with respect to the time axis defined by a'. 

Case Ill" ui(0) timelike. There are two subcases according to whether 
u'(0) is parallel to W or not. If W(0) is not parallel to W (5) becomes 

. ' ( 0 ) -  ts~ 
,,'(t) = (18) 1--2u4(0)t + t 2 

and again (7) requires (16). Since ui(0) is timelike, however, it is not possible 
that u 4 ( t ) = 0 .  In fact, u4(t) changes sign at t = - +  u4(0) [as u4(0) is, 
respectively, positive or negative]. If u4(0)>0,  for example, ua(t) will be 
positive if 0 < t  - / . / 4 ( 0 ) <  lu] and negative if - lu] < t  - z t4 (0)<0 .  This 
critical point of the function ~" occurs at the 6, of (9). Since "r is defined by 
d,r/dt = u4(0), t ~ u4(0) corresponds to an infinite blue shift. In the past if 
u4(0) < 0 and in the future if u4(0)> 0. t -~ u4(0) + - lu], on the other hand, is 
an infinite red shift. 

If W(0) is parallel or antiparallel to a t [W(0) = e6,~, e =  +- 1], then u = 0 
and (5) gives us 

W ( t ) -  ~ (19) 
e - - t  
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If e = l  there is an infinite red shift at t =1. If e= - 1 this occurs at t = - 1. 
In the first case the geodesic is complete to the past. In the second case to 
the future. 

In summary, the geodesics of (5) are incomplete in all directions except 
the direction either parallel or antiparallel to a and null directions which are 
future pointing or past pointing, but not both. Extension of geodesics will 
not be considered in this paper. 

Keeping in mind the limits on t we can integrate (5) to obtain, for 

Q(a,u)= 1~121 u(0)12 - (a. u(0))2 =~ 0 

i 

xi(t) = xi(O) + 2 l -~ ln [1  +2(o~. u(O))t + I~[:lu(O)12t 2] 

+ [ui(0) (a~u(~O))eti]H(t) IO/[ 2 (20) 

where 

2 { 2(tal2lu(O)12t+(a'u(O)) 
tan-' 

[ 2(a.u(O)) ]} 
- t a n - '  f ~  Q > 0  

H ( t ) =  2 {  t 2(,~lZlu(0)lZ+(,~'u(0)) 
tanh- 

_ ( - Z _ Q  

- t a n h - ' / 2 ( a "  u(0)) ]} Q<0 (21) 

if ui(O) is not null, and 

u'(O) ln[1 +2(a. u(O))t] xi( t ) = xi(O) + 2(a. u(O)) (22) 

if ui(O) is null. If Q(a, u)=  0 then ui(O) must be proportional to a i and 
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(a. u(0)) ~ 0. Equation (5) integrates to give 

a t [ al21u(O)lZt+(a'u(O))] xi(t):xi(O)+~_~ln I -~a:-u-~ 

+ [.'(o) ,] I, 12.(o)12t (23) 

[ i + 

3. GEOMETRIC PROPERTIES 

Space-times with locally constant  connect ion exhibit some strikingly 
elegant geometric properties.  

Theorem 5 (Antonelli  and Voorhees 1982). Let (M,  g) be a confor- 
mally flat space-time with locally constant  connection.  If the vector 
a t is not null the Ricci tensor of M has one zero eigenvalue and an 
eigenvalue -- 2 e -  4*(arar) = _ 2 e -  2~ i a] 2 of multiplicity three. Fur- 
ther, the eigendirection corresponding to the zero eigenvalue is in 
the direction a ~. 

Proof. The eigenvalue equation for R~ is, from (A.3) 

2 e -  2,[(  a .  k )a  i -  la l2k '] = Xk' (24) 

Clearly k i =  a t is a solution with ~ = 0. Equally clearly, any k i satisfying 
( a . k )  = 0 is a solution with ~ = -2e-2 ' t ' [  a] 2. �9 

Since a ~ is timelike the three independent  eigenvectors corresponding to 
the - 2 e - 2 * l a l  2 eigenvalue must be spacelike. Let (~[r)lr=l ..... 4;~'{4)= 
(c~j.aJ)-1/2a~} be an or thonormal  frame of eigenvectors of R~j. The six 
bivectors 

w(%)= 2~'~[)~'~},(r, s = 1 . . . .  4; r<s)  (25) 

are a basis for the space of 2-forms on M. It is well known that the Riemann 
tensor defines an automorphism on this space. Use of (A.2) yields the 
following: 

Theorem 6. The W(rs) of (25) are eigenbivectors of the Riemann 
tensor. If a ~ is not null the eigenvalues are zero and 2e-4*(%cff)  = 
2e-Z*la l  2, each with multiplicity three. The corresponding bivec- 
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tors are, respectively, w<ls) (s = 2, 3,4) and W(rs) (r,  s = 2, 3,4; r < s). 
Each of the W(r.~. ) defines a 2-surface. 

Theorem 7. Let K(r, s) be the sectional curvature of the 2-surface 
defined by W(rsv Then 

~ ( 1 , s ) = 0  ( s =  2,3,4) 

~(r,  s) = - 2e-4q'(~xta ')  = -2e -Z~[  ~x[ 2 ( r , s = 2 , 3 , 4 ; r < s )  

(26) 

Proof follows by direct computation using the formula 

R ~,ij  ~4~kl 
ijklrV(rs)"~rs) 

x(r ,  s) - (27) w('Lw::') 

The 2-surfaces defined by the wl~s) are totally geodesic since by (5) any 
geodesic which is initially tangent to one of these surfaces remains tangent 
to that surface. Since the ~'[r) ( r = 1 , 2 , 3 )  can be any set of orthonormal 
spacelike vectors orthogonal to a ~ we obtain the following: 

Theorem 8. A conformally flat space-time with locally constant 
connection admits an 0(2) invariant family of totally geodesic 
2-surfaces, each with zero sectional curvature. 

4. DISCUSSION 

In the coordinate system of Section 2 the line element for a conformally 
flat space of locally constant connection is 

ds 2 = e -2" (  dx  2 + dy 2 + dz 2 - d r  2 ) (28) 

where x = x ~, y = x 2, z = x 3, and ~" = x 4. The transformation 

~- = - l n o  (29) 

puts this into the form 

as 2 : o2(  dx2  + ay ~ + az ~ ) - do 2 (30) 

which is the form of a Robinson-Walker universe of infinite radius (Tolman, 
1934). Assuming a perfect fluid stress-energy tensor the density and pressure 
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for this universe are given by To lman  as 

3 
, 0 =  m 

0 2 

- 1  
p -  o2 (31) 

These expressions can equally well be derived f rom (A.5). Since the pressure 
is negative this universe must  be considered as unphysical .  No te  that 
p + 3 p = 0 .  

From (29) the time pa ramete r  o goes to infinity as ~- goes to m i n u s  
infinity and goes to zero as T goes to infinity. But o = 0 is the big bang for a 
universe with line element (30). Thus  we may  think of the space- t ime 
described by (28) as a R o b i n s o n - W a l k e r  universe with negative pressure 
running in reverse. The  infinite blue shift for timelike geodesics discussed in 
Section 2 then corresponds  to the point  of m a x i m u m  contract ion.  

A P P E N D I X  

The connect ion coefficients, Riemann,  Ricci, and Einstein tensors, and 
scalar curvature  for a space- t ime with metric (3) are 

i m  i F i i -  a ( i  v s 4), F 4 = _ _  ~ 4  

i - -  F,~ i - (i v~ 4) Fij - F]i = a j ( i  4 = j ,  j 4 = 4), ' - - a 4 

i _ _  __ a i  4 ) ,  4 4 Fj~ -- ( i :/: j ,  i:/= Fj~ = ~ 

i m I'j , - - 0 ,  i sa j =/: k (A.1) 

i - -  i i r  
R j , , -  2[q~,jd?, (,3kl + + ~,,srlA,3/l] '0 d?,,:Ojit~., 1 r/~sdP, (A.2) 

R i j  = 2(~,idp,j - -  ~ij~rs~),rdP,s) (A.3) 

R = --6e-2q'rlrsdp,rdP,s (A.4) 

Gij  = 2eO,ieO u + ~ij~rsf~,rd~,s (A.5) 
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